AD-A154 769 THE DESIGN AND INPLEMENTATION OF AN OBJECT-ORIENTED
PRODUCTION-RULE INTERPRETER(U) NRVHL POSTGRRDURTE
SCHOOL MONTEREY CA H M MCARTHUR D

UNCLASSIF IED F/G 9/2

Tr——— <
e TTT—————— Camen -

A RO

_"'} I""'."‘ S .

AR

(GAOERG

r v v
'.'l'l.'!o
.

2 2R e e

IR A TRERER AR

ananananieery gn
!
]

=
N
-

oy

1E e
e
22 it e -

"EEEEE [
EEE

rr
I3
re

)
MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A . S

t- .
.-_ - e
\'- _' -
=

NAVAL POSTGRADUATE SGHOOL

Monterey, California

DTIC
ELECTE ’.-.-_.‘;-.'4
JUN 1 2 185 i

THESIS T & &

THE DESIGN AND IMPLEMENTATION OF AN
OBJECT-ORIENTED, PRODUCTION-RULE INTERPRETER

AD-A154 769

by)

Heinz M. McArthur R
December 1984 'f
3

OTIC FILE COPY

Thesis Advisor: Bruce J. MacLennan

Approved for public release; distribution is unlimited

DRI S TSI B S 2 W R R IR .

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

. READ INSTRUCTIONS

1. REPORY NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

. 'Y 4. TITLE (and Subtitie) S. TYPE OF REPORY & PERIOD COVERED
a . , Master's Thesis

~~ The Design and Implementation of an

o ; . ; December 1984

.. Object-Oriented, Production-Rule

:._ Interpreter 6. PERFORMING ORG. REPORT NUMBER
:': 7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)

Heinz M. McArthur

.
a

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PngiaAw ELEGENT.PROJECT. TASK

Naval Postgraduate School
Monterey, California 93943

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School December 1984

Monterey, California 93943 13. NUMBER OF PAGES

211
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (cof this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, il different [rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If necessary and Identify by block number)

object-oriented, relational, production-rule, rule-based,
pattern-directed, pattern-matching

20. ABSTRACT (Continue on reverse side If neceseary and identity by block number)
In this thesis we describe the design and implementation of two

prototype interpreters for Omega, an object-oriented, production-
rule programming language. The first implementation is a throw-
away prototype written in LISP; the second implementation is a
more complete version written in C. The Omega language features
two major components: a set of production rules executed through
pattern-directed invocation, and a relational database of values R
and objects. We develop a simple system of rule (Continued) el

DD ,"5%%s 1473 e€oimion oF 1 NOv 68 13 OBSOLETE l
D
1
-

S'N 0102- LF-014- 6601

1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

PO M S dir M Il

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ABSTRACT (Continued)

evaluation which relies on hashed indexing for rule selection
and a list implementation of relations. The system's per-
formance is evaluated in comparison with LISP and Prolog
interpreters. We conclude with a discussion of our experience
in developing example applications, and recommend extensions
to the language based on this experience.

AY

Accession For

i pa

[NTIS GRAZI X

DTIC TAB
Unannounced 0
Justirioation_________4
By.
| Distribution/
Avai}gbility Cedes
Avail and/oyr

Dist Special

Al

S N 0102- LF- 014- 6401

2 SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Approved for public release; distribution is unlimited.

The Design and Implementaticn of an Object-Driented,
Production-Rule Interpreter

by

-

) Heinz M. HcCArthur
Captain, United States_Marine Corqs
B.S., Unifed States Naval Acadeny, 1977

Submitted in partial fulfillment of the
requirenents for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAIL POSTGRADUATE SCHOOL
December 1984

Author: ;ZZ;lf\/1bh£4%42Z2:22§:>*\
1\7 Iz (=3 o PR - (o @ of #7711 § o

Approved by:

T nesIZ~AdviIsor— -

DanIsI"DarLs,. 58 ATHREager

- Je HacLeén#&n, Chairman,
Department of Computer Science

\ . M

neale T MALShRall, T~~~ "~~~ ~
Dean of Information and Pollcy\3€1§éces

A A

ABSTRACT

In this tkesis we\describeﬁﬁhe design and implementation
of two prototype interpreters fc¢r Omega, an object-oriented,
production-rule proyramming language. The first implementa-
tion is a throw-away fprototype written in LISP; the second
implementation is a more complete version written in C. The
Omega language features two major components: a set of
production rules executed through pattern-directed invoca-
tion, and a relational database of values and objects. He
develop a simple system of rule evaluation which relies on
hashed indexing for rule selection and a list implementation
of relations. The system!s fperformance is ?K%igﬁted in
comparison with LISP and Prolog interpreters. _We conclude-
with a discussion of é%f experience in developing example
applications, and recommend extensions to the language tased
'on this experience.

J TABLE OF CCNTENTS

I. INTRODUCTION ¢ o o« o « « o « o o« o« o s o o o « « & 12
A. BACKGROUND v v« v « « o o o 2 « a « o =« o« « « =« 12
B. APPLICATIVE LANGUAGES .+ « o o o o = « o « o « 13
C. OBJECT-ORIENTED LANGUAGES . « ¢ v« « « o« « o - 13
D. INFERENCE SYSTEMS AND LOGIC PROGRAMAING . . . 14
E. A COMBINED APPROACH =« « 2 2 « = ¢« s « o « « « 15
F. AN IMPLEMENTATION STODY . o v« ¢ « « « « « « - 15
G. A SUBJECTIVE EVALUATION . . v o o » & « « « « 16

I11. AN ISFORMAL DESCRIPTION OF THE LANGUAGE . . « « . 17
A. GENERAL &« o o« ¢ o o o @ o o o o o s o o o « « 17
B. OBJECTS AND VALUES « o o o o o « o o o o = « « 17
C. A RELATIONAL MODEL . ¢ ¢ = o « o « « » = o « « 18
D. PATTERN-DIRECTED FRCDUCTION RULES . . « « « « 19
E. THE APPLICATIVE COMPCNENT . . o o ¢ o o =« « « 23
F. PROCEDURKES ¢« o o o o o ¢« o o « o o s o o« « o« « 24
G. SEQUENTIAL CONTROL < « « o « « o o = « o « » o 26
H. CONTROLLING THE NAME SPACE . « ¢ ©. o o o o = o« 217
I. A PROGRAMHING SYSTEM o« « o o o o« o« =« « o « « o« 30

III. DESIGN ISSUES AND GOALS 4 v o o o « o« o o o o o & 22
A. TdE ARCHITECTURE OF RULE-BASED SYSTEKS 32

B. KULE SELECTION AND CCNFLICT . @« ¢« o 2 o o o « 32

C. PATTERN-HATCHING . o o « ce o o « o a « o =« o« o« 33

D. MORE CONVENTIONAL ISSUES ¢ « « o o « « « « « o« 35

E. DESIGN GOALS v «o o « e o « o 2 s s o« o « o« « « 35

1. Feature Implementation +« « « « « « 35

2. Relation Representations . . .« . « « « « « 36
3. Efficiency .« . o« ¢ ¢ o o 2 o s 2 o o o &« « 36

....................................

.. .,..'
R BEATSRALS
- " . PR .' .‘ -‘ . l' P
L P e e e
SIRIINP NI NP LPIPY

4. EVAlUAtiON « « o « = o o o o = o o o o « - 36

Iv. A LISP PREOTOTYEE « « 2 o s s o a o« o o o o o o o o« 37
A. WHY LISP? &4 o« o o o o o o o 2 o o« o o o o « o« 317
Be ORGANIZATION . ¢ o o o o o o a o o o« « « o o« o« 38
C. THE LEXICAL SCANNER AND PARSER « « « = o« « o « 38

1. The Lexical SCADLEr « « « « o « « « « o« - 38
2. The PAISEr « o o« o o o o « o o s o o o « « 39
D. RULE EVALUATION . 2 o« o o « « o « « = o o « » U1
1. Instruction Evaluation .« « « & « o & « « o U2
2. The Applicative Component . . « « « « o . 42
3. ObjeCts o o o o o o« o o e = o @« o o o o o 43
4. RelationNS o« ¢ o o o o o o o o« o o o « o o« U4
S. Binding .« ¢ ¢ o ¢ o ¢ o 4 e o « o = o « o U6
Ee CONTROL o o o ¢ o o o o o o« o o « o = a o « « 48
F. ERROR CONDITIONS . o « 2 s o « o o « o o« s « « U489
G. A BOOT SYSTEM <« « o ¢ = o o« o e 2 o« = o« « »« « 50
He LESSONS LEARNED &+ o o o « o o « o « o « o« « « 51

V. A FOLLOW-~-ON IMPLEMENTATICH IN C . ¢ « ¢ o « « « « 54
A. WHY C2? o o o o ¢ = o o s o o o » a« o o o« =« =« « 54
B. CHANGES TO SYNTAX AND SEMANTICS . ¢« « « « « « 55

1. An Antecedent Reyword . . « « « « « « « « 55
2. Rule Denotations « ¢« ¢« « & o ¢ ¢ ¢ « ¢ « . 55
3. Rule Separators . o« « o« « « « o o o « =« « 56
4. Parameter ListS .« ¢ ¢ ¢ o o o o o o « « o« 56
S. Conditional Expressions and Function
Definitions . ¢ ¢ ¢ ¢ « ¢ * o o o o o « ~ 57
6. An Implicit Response for Command Rules . . 58
7. Head/Tail Pattern Specifications . . « . . 59
C. DATA STRUCTURES =« ¢ v « 2 o o o o « o« o = & « 59
1. A Uniform, Tagged lList Structure 59 5}

-~

Le ObjeCtS - - . - L] . - [- - . - L] - L] - - 62 ?“1

3‘ Hash Tables - L] - - - L L] - L] - - L L - L] 6!‘

vI.

M.
N.
0.
P.

Q.

B, RelatlONS o o o « o « o o o o o =

5. DIirecteories .« « ¢« o o ¢ o e o « =
ORGANIZATION: THE TOF LEVEL . &« « «
THE READER ¢ o o o o o o e o« o o « « =«
Te A LEX SCanner o« « « o o o o o + o
2. A YACC PArSET o o o 2 ¢ o« o o o =
3. Console and File Iaput « « « « « «
A RECURSIVE PRETTY PEINTER « ¢« - . « &
RULE EVALUATION .« o 2 o e « o o o « =
BINDING =« o ¢ o « @« o o « a o o o o
1. Binding At Activation
2. A Binding Stack .« « o a ¢ ¢ o o« a
BACKTRACKING « o « « o o o o o o o« o
RELATION MANAGEMENT EKOUTINES «
ACTIVE RULE PROCESSING « o « « ¢ o « o«
Te Triggers v o« o o o o o s o o o o «
2. A RuleQlUeNE v o o o o o o o o o =
3. Advantages and Disadvantages of
Triggering o« o o o o o o o o « o =
4. Two-level Triggering . « « o « o =«
THEZ APPLICATIVE COMPCNENT . « « « «
PROCEDURES @ ¢ ¢ o e « o « o « o« o o @
BUILT-IN TFUNCTIONS AND PROCEDURES . .
CANCEL OPERATIONS 4« 2 o o o o o o o @
SEQUENTIAL BLOCKS « o o o o o o o o =
1. A Single-Pass, Multi-~Scope Symbol
Table .« ¢ o ¢ ¢« o ¢ « o o « o « =
2. Evaluation of Multi-Scope Bindings
SYSTEM INITIALIZATION . ¢ ¢ o o o « «

STORAGE MANAGEMENT o o o o « o o o« o o « o

A.
B.

TAE STORAGE PROBLEd ¢ ¢ o o o« o o « =«

STORAGE ALLOCATION AND THE UNIX VIRTUAL

ADDRESS SPACE < ¢ o « o ¢ o o o« o o «

67
€7
68
69
70
70
73
75
76
77
77
78
81
82
83
83
83

84
85
87
89
91
92
93

94
95
97

98
98

99

C. IGNORING STORAGE MANAGEMENT . . « « ¢« « « « 100
D. OMEGA-SPECIFIC STOEAGE OPTIYIZATION 102
E. REFERENCE COUNTING o « « « o o o « o« = =« o o 104 .
F. GARBAGE CCILECTION . « « « « « o 2+ « « « « «» 108
G. REDUCING CELL STORAGE =« « + « o o o« « « « « 109

ViI. PERFORMANCE EVALUATION « ¢ « o o e o s o o o o o 111
A. METHODOLOGY &« o e « o o o o o o « o o « « « 111
1. Execution Profiling .« « ¢« o« o o « « « « 111

2. Benchmarking « « « o o o o o « « o « « « 113

3. Omega StatisticCsS « o« « « o o « ¢« o« « « « 114

Bo TEST RESULTS ©« o o © o @ o o o o o = o o o 114
1. A pattern-Matchipg Test . . « ¢« « « « « 115

2. Factorial Functicns . « « « ¢« « « « « « 115

3. A Prime Number Sieve . « « + o « o « « « 116

. QuickSOLt .« 2 o o o 2 2« o o o« o « « « - 118

5. A Simulation Program « - « « « « = « « « 120

C. IMPACT OF KEFERENCE COUNTING . o« v « o o o « 122
D. DISCUSSION OF RESULTS =« o o o @ o « o o = = 123
1. Performance Bottlenecks 123

2. Relation Statistics . « 4 o ¢ ¢ « &« « o 127

VIII. OBSERVATICNS, RECOMMENDATIONS, AND CONCLUSIONS . 128
A. OBSERVATIONS ON OMEGA =« « ¢ o « o « « « « » 128
1. Programming Experience . . « . . « « « . 128
2. Omega and Prolog « « « « o« o « « « « « « 128
3. The Production Rule as 4 Programming
Paradigm « ¢ ¢ o o ¢ ¢ « 4 o o o o o o« o 131
B. RECOMMENDED AREAS FORK ADDITIONAL STUDY . . . 134
1. Extensions to the language « . - 134
2. Extensions to the Present Interpreter
DESign v o o o o o o o o o o o » o « =« o« 136

3. Parallelism in Omega « .« « « « « « « « « 139
C. CONCLUSIONS &« ¢ o o o o o + « o o o o« « o o 41

JA .
PP} '
gt te e e

",';."A‘L

T
e -
Ta PR
! ook

APPENDIX A: LEX AND YACC SPECIFICATIONS FOR OMEGA . . 143
APPENDIX B: BUILT-IN FUNCTIONS AND PROCEDURES 161
APPENDIX C: UTILITY FUNCTIONS AND RULES « . 164

APPENDIX D: COMPARATIVE APPLICATIONS: OMEGA, LISP,
AND PROLCG « o o o o « o o o o = o « « « « 171

APPENDIX E: OJMEGA APPLICATION EXAMPLES 186
LIST OF REFERENCES o « « o o o o o o o o o a2 « » o « « 206
BIBLIOGRAPHY « « o o o o o o s « o « o = o o s « o « o« 209

INITIAL DISTRIBUTION IIST o « o o o « = o o o o o o o « 210

1
R
AR
s
gt e at. 4

II.
III.
Iv.
v.
VvI.
ViI.
VIII.
IX.

XI.
XII.
XIII.
XIvV.
iv.
IvVI.
XVII.
XVIII.
XIX.
XX.
XXI.

LIST OF TABLES

Cell Field VAluEs .« « o« ¢ o o o « o« o = o =
Execution Times: Pattern-matching
Execution Profile Summary: Pattern-matching
Data Type Fregquencies: Pattern-matching . .
Execution Times: Factorial . . . ¢ ¢« « o o «
Execution Profile Summary: Factorial
Data Type Frequercies: Factorial
Omega Relation Characteristics: Factorial .
Execution Times: The Sieve « ¢ ¢ o o« o o o «
Execution Profile Summary: The Sieve
Data Type Frequencies: The Sieve « « « . .+ .
Cmega Relation Characteristics: The Sieve .
Execution Times: Quicksort . . . &« ¢ o « o «
Execution Profile Summary: Quicksort . . . «
Data Type Frequencies: Quicksort . . . « . =
Omega Relation Characteristics: Quicksort .
Execution Profile Summary: Simulation . . .
Data Type Frequencies: Simulation
Omega Relation Characteristics: Simuiation .
kReference Counting and Execution Times . . .

Proiile of Quicksort with Rerference Counting

10

62
116
116
17
117
118
118
119
119
120
120
121
121
122
122
123
123
124
124
125
125

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
6.1
7.1

LS R S

Cell
Tree
Hash
List

Left-

LIST OF FIGURES

Structure . ¢ o ¢ o o &+ o o o o o o .
Representation for a Simpie Expression
Table Structure . ¢ ¢« « ¢ o « o o o
Representation for Relations

Recursive list Representation

Transformed lList Structure . « . « « « o« =«

The Binding Stack « « + o o« « o o o o « o

Multi-Scope Symbol Table . « « « ¢ o o« o

UNIX Memory MadD o« o« « o o o o o « a « o o

Code generation for TAG function

11

61
63
66
68
74
75
79
95
101
112

e A . ST DT U U A
ERNLPIR I S) B e Sl i Bt Seteslsatnds DI TP WAL D . U Y T ¢

Y e . ol B a e e T 3 i 4

To illustrate this, consider the assertion of a tuple in
the Reguest relation. Such a tuple may be <a, r>, where the
object a is a relation representing the agent, and the
object r indicates the resource desired. This assertion was
made to trigger the following rule:

if *Request{a, r), *Aivail(r, id) ->
a(id).

In this example, the relation a is wused as a mailbox to
receive a response from the server rule. The assertion ot
the tuple <a, r> is similar te the creation of a conven-
tional activation record, and the mailbox a 1is similar to
the activation record of the caller.

The assertion a(id) places the desired response--a
resource identifier--in the relation belonging to the
requesting agent. When this response appears in the mailbox
relation, the -requesting agent may extract the result and
continue its computations. The mailbox relation serves as a
svnchronization and value-returning mechanisn.

In an event-driven system, such a calling seguence would
be a common usage pattern. This is recognized by the inclu-
sion of a calling mechanism within the language. The above
sequence could be initiated by a synchronous call. Consider
the following rule:

if *InitProc(p)., *Require (g, r), -~Allocate(p, x) ->
Allocate(p, Request{r}).

The Request expression in this example 1is a synchronous
procedure call. Its effect is the automation of the mailltox
handling of the previcus rule. The call Request [r; wilil be
translated by the system into an assertion Request(a, r).
The object a is a system-supplied relation that will receive
a response from rules firing as a result of the assertion.

Wwner, a tuple 1s added to this relation, the tuple 1is

25

N WSS W Vel WP . I L SR, S . N SRR WO T o)

Aadian. Snd Bt ath S e 4

Named functions may also be used within expressions in
the same way as the infix operators. This is shown in the
following rule:

if *AvailTapeDrives(L1), *TapeQueue (L2),
(L1 ~= Nil) & (12 ~= Nil) ->
AvailTapeDrives (Rest[11)),
TapeQueue (Rest[12]),
Allocate (First{ L1], First[12]).

In this example, availdble tape drives and jobs gqueued for
tape drives are rerresented as 1lists. The functions
First{x] and Rest[x] return the head and tail pointers of
their argument.

Punctions are declared as fcllows:

fn fact{x] : if x <= 1 -> 1

else x * fact x-1].

This example illustrates that function bodies are similar to
rules, and are in fact conditional expressions. The antece-
dent of a conditional expressicn is a Boolean expression,
but not an inguiry or absence test. The consequent of a
conditional expression is another expression, not an asser- T
tion or deletion. Thus, conditional expressions (and func- .
tion bodies derived from them) are free of side effects. As
the factorial example illustrates, functions may be declared
recursively. Iterative constructs are not defined.

F. PROCEDURES

4 typical invocation sequence for a rule begins when a
tuple is added to a relation. The tuple is associated with
an agent--the object or process that made the assertion--and
the agent often expects a group of rules to execute as a
result of this assertion. Finally, the agent may expect a
value or object to be returned.

24

......

The cancel operation returns true if the indicated pattern
is matched against a tuple in a relation. If the antecedent
of the rule succeeds {all conditions are true), then the
tuples matched during cancel operations are deleted fronm
their relations.

Rules may be «coupled througyn alternation. In the
preceding rule, an alternate action may be desired if the

requested resource is not available. This is expressed as:

if *Request (resource, job), *Avail (resource) =->
Allocate (resource, jok)

else if *Request (resource, job) ->
Blocked (resource, job).

The antecedent of the alternate rule will be evaluated if
the primary rule faiis. In this example, the eifect will be
to place the job in a blocked state.

BE. THE APPLICATIVE COMPONENT

Function application is used to support the state tran-
sitions described above. In those cases where a tuple must
be specified, an applicative expression may be used to
compute the value of a member. Consider the following rule:

if *TapeDrives(j, n), n + 1 <= 10 ->

TapeDrives(j, 2 * n) .

This rule uses infix arithmetic operators to compute values
in a constraint and during an assertion. Such operators are
permissible in constraint expressions and in the consequent
portions of the rule, with the restriction that variables
participating in such expressions must be bound. In the
preceding exanmple, the variable n was bound in the
TapeDrives inguiry.

RS
P
NSRS PPy

.....................

-t alatan

If the contents of the Request ard Avail relations match the
inquiry patterns, the rule will "fire", and add the tuple
{resource, job> to the Allocate relation.

In the previous example, the free variables resource and
job were bound in the antecedent portion of the rule. These
bindings were maintained through the consequent portion of
the rule and determined the instantiation of objects added
to the Allocate relation. Free variables, therefore, must
be bound through pattern-matching before their use in the
consequent of a rule.

The allocation example raises soae probleas. The rule
successfully allocates a resource to a job by the assertion
to the Allocate relation. This assertion, however, does not
aiter the conditions Request and Avail that initiated the
rule's firing. Thus, this rule may conceptually "fire
forever" unless some action is taken to disable one or more
of its conditions.

The deletion is used for +this purpose. The allocation
rule may be written as:

if Regquest(resource, job), Avail (resource) ->
-~Request (resource, jol),
-Avail (resource),

Allocate (resource, jol).

The deletions -~-Request(resource, job) and -Avail (resource)
remove the indicated tuples from their relatiomns.

The preceding actions-~determine a pattern-match of a
tuple within a relation, then remove the tuple--is a typical
seqguence. An abbreviated syntax for this sequence is the
cancel operation. Using cancel operations, the preceding
rule may be written:

if *Request (resource, job), *Avail (resource)

!
\%

Allocate(resource, jolk).

22

c ..
PULS

AR R M S A atsls San S

The absence of a tuple from a relation might or might
not be interpreted as the negation of its presence. If one
uses a "closed world" assumption, then absence is the same
as negation. The logical interpretation of an absence test
is dependent on the programmer's intent and assumptions.

Free variables are not bound in an absence test.
Consider again the rule:

if -~TapeDrives(j, #) =-> « « =«

For the antecedent to be true, there is no tuple <j, & in
the TapeDrives relation. Therefore, the free variable j
will remain unbound.

The inquiry and absence conditions form the basis for
the evalnation of the current state of the system. An addi-
tional mechanism is provided for the evaluation of state
information. This mechanism is termed a constraint, and can
be any Boolean expression.

Consider the case where one is interested in determining
if a job requires more than 5 tape drives. This could be
expressed as :

if TapeDrives(j, n), n > 5 -> . . .

where the expression n > 5 1is a constraint. The joinm

exanple shown previously could le rewritten as
if TapeDrives(j1, n), Priority{(j2, p), j1=j2 -> . . .

The consequent portions of rules alter the state of the
system. The actions of the consequent typically update
relations in some way. The fundamental actions are asser-
tions and deletions.

An assertion adds a tuple to a relation. Consider the
rule:

if Request (resource, job), Avail (resource) ->

Allocate(resource, jol).

21

match the inquiry against the tuples of the relation. Once
a logical variable has become bcund through an inquiry, this
binding will remain in effect for that particular rule.

The following, more complex, ingquiry relies on variable
binding: .

if TapeDrives(j, n), Priority(j, p) -> . . .

The comma is considered as a lcgical "and" between the two
inquiries. Thus, the antecedent of this rule will be evalu-
ated as true if tuples exist ip the TapeDrives and Priority
relations such that the first member of each tuple is the
same. This corresponds to the equality join of relational
database systens.

It is important to note that inquiries are existentially
guantified. An inquiry is evaluated as "if there exists a
tuple <x1, ..., xn> in relation R, return true."

It is also important to note that the logical variable
binding done during [pattern-matching is in effect only for
the duration of the rule. The scope of a logical variable,
then, is the rule where the variable occurs.

Other variables may have more permanent bindings, and
behave like constants. There is no syntactic distinction
between free and bound variables. To avoid confusion in
examples, free logical variables will always begin with a
lower case letter, bound variakles and constants will begin
in upper case.

Another type of antecedent condition is a test for the
absence of a tuple. This condition has the form

if -~TapeDrives(j, 4) -> . . «

which is read "if it is not the case that a tuple <j, Uu4>
exists in the TapeDrives relaticn." 1If the tuple fpattern is
not a member of the relation, the expression is evaluated as
true.

20

T P ——— -—T

Relations theaselves are chjects, althouyh they are
distingjuished by having an intrinsic value: the collection
of tuples ipstantiating the relation. As objects, relations
may be members of tufples and participate in other relatiorns.

D. PATTERN-DIRECTED FRODUCTION RULES

The relations organize the primitives of the systen.
Thus, at a yiven time, the state of the system is character-
ized by its relations and the entities bound through these
relations. To complete the model, a mechanism must be used
to describe state transitions. Pattern-directed production
rules are used for this purpose.

A rule is a pair <a, ¢>, where a is termed an antecedent
and ¢ a consequent. An antecedent consists of Boolean
conditions that pertain to the state of the systen. Tne
consequent consists of actions that will be executed if the
conditions of the antecedent are true. FKules are written:

if <antecedent> -> <consequent>.

A condition may be one of several constructs. The aost
fundamental is the inguiry. An ingquiry is a pattern-matched
test described by the rule that is performed against tiae
relatious of the systen. As an example, consider the job
queue again. A rule may be desired that checks for jobs
requesting 4 tape drives. This could be expressed as:

if TapeDrives(j, 4) -> . . .

where the consequent of the abcve rule is not shown. The
expression TapeDrives(j, %) is an inquiry, and may be read
as "if there is a tuple <entity, 4> in the TapeDrives rela-
tion, then return true and bind the entity to the variable
j.-" The symbol j in this example is an unbound 1logical
variable, which is considered a wild card in an attempt to

19

* Objects are subject to change over time.

» Objects may be created and destroyed.

The distinction between objects and values is discussed in

[Ref. 15]. Subsequent examples should help to illustrate
the rcle of objects in Omega.

C. 1A RELATIONAL MODEL

The components of the 1languaje are organized according
to a relational model. The wmcdel is consistent with rela-
tional terminology introduced by Codd [Ref. 16].

Consider an object that represents a queued process

waiting for an operating system resource. For reference
purposes, the object must Le naned, so call it J.
Associated with the object are a priority, P, and a tape

drive allccation reguirement, T. The priority and resource
requiremenrts are values that pust be associated with the
job. These associations may be described by a Priority
relation and a TapeDrive relaticn. This could be expressed
as Priority(J, P), TapeDrives(Jd, T). In these expressions,
the pairs <J, P> and <J, T> are called tuples.

A tuple is an ordered collection of objects and values.
Note that, unlike relational database models, named attri-
butes are not used to descrite a tuple. Instead, the
members of a tuple are described by relative position (order
is important), by value, and by pattern-matching.

A relation is a set of tuples. Relations are described
by name, and through pattern-matching. As a set, the tuples
of a relation are (1) unigue and (2) unordered.

Objects serve as representative place holders in rela-
tions. The state of an object is determined by the rela-
tions in which it participates, and by the attrikutes
associated with the cobject in these relations.

18

et
oo
et
AT

)
R
a2

.
Ve
A

LY SR

RRCRIORANAAL AL AN AP AR hte JrSn. i (e Snoe JNas Srtn i th a0 e L. -.” ML AN A e o e e
AL SR A S T RIS R B LT o - . : S

- II. AN INPORMAL DESCRIPIION OF THE LANGUAGE

A. GENERAL

This chapter provides a descriptive summary of the
features of the Omega languaye. The descriptions are mainly
by exanmple, and serve to provide a feel for the language
constructs, not detail.

The material in this chapter is based on the work of
Maclennan. The philosophy, informal and formal semantics,
and original syntax of the 1language are introduced in
[Ref. 14]. Some syntactic and semantic differences exist
between the original description of the language given in
[Ref. 14] and the prototype implementations. Later chapters
will deal with the rationale for these deviations. The
implementation syntax is used in this chapter to maintain
consistency with withk the remainder of this thesis. A

- description of the implemeantation syntax is contained in

Appendix A.

B. OBJECIS AND VALUES

The entities of the system are divided into values and
objects. The values of the system include numerics (inte-
gers and reals), character strings, and lists. Lists are
denoted ky square brackets, such as:

[lla"' "bll' [1' 2]].

Objects are referenced by nane, and are subject to the
following properties:

e Objects are unigue.

e Orjects may be shared.

17 i 1

..........

interpreter organization, data representation, and control
strategies used in the implementation, and how these charac-
teristics impact on the performance of the systen.

This work is a rrototyping effort. Because of the
experimertal nature of the language, various extensions and
modifications were required on preliminary designs. To
support this experimentation, two prototypes for the inter-
preter were written. The first was a throw-away prototype
written in Ffranz LISP. The second was a more complete,
incremental development written in C.

G. A SUBJECTIVE EVALUATION

As a secondary emphasis, some attention is given in this
work to the evaluation of Cmega as a general-purpose
programming language. While these observations are larjely
subjective, they provide some insight into the implementa-
tion [problems associated with these early prototypes.
Having prototype interpreters wup and running has also
provided an opportunity for experimentation with Omega
programming that may fprove useful in the early evaluation of
features in the language.

16

e et e e S
PRPPE SU Y PUDPC PR

and expert systems such as MYCIN [Ref. 10], DENDRAL
[Ref. 11], and PROSPECTOR [Ref. 12].
Prolog is a general-purpose language which uses rule-

based theorenm proving as the computational metaphor
[Ref. 13]. Distinct from the applicative languages, Prolog
uses pattern-matching instead of the procedure «call to
determine the applicability cf rules and the resulting
computations.

E. A COMBINED APPROACH

The preceding discussion highlights the following

features offered by these languages:

e Function application provides a powerful, regular mecha-

nism for stateless computation.

* An object-oriented approach provides an effective crgan-
ization for data and procedures which is useful in
representing temporal relationships and real-world
okjects.

e Rule-based pattern-matching systems have provided an
alternative way for exgressing complex knowledge
representation.

The Omega language [BRef. 14)] represents an approach that

combines these features into a single language framework.

F. AN INPLEMENTATION STODY

The emphasis of this thesis 1is on the implementation of
an interpreter for the Omega language. As an implementation
study, the focus is on language architecture--those charac-
teristics of the 1language that were «conducive or that
presented obstacles to efficient implementation. Of partic-
ular interest in this effort are the characteristics of

15

* "- T
[2 L%y
R .
Lo, e, e,
6% et
’ P

T e,
’

B

Ll aein o ulh ook il Jnell sueds UVl Sl RNEL 4

by Smalltalk [Ref. 5]. Smalltalk partitions the program-

der's model into collections of objects called classes.

]

Objects have a state associated with them, and the methods . Lij

{(procedural information) of the class determine an object's 4
computational behavior. Both data and procedural informa-

tion are organized around the olject. .

The object-oriented approach allows certain important =

capabilities. Foremost, the <concept of state is fully

ingrained in the language. The simulation approach facili-

tates the modeling cf real-world activities, with concur-

rency readily handled through the mechanism of communicating .
objects.

Associated with the class mechanism in Smalltalk is the
concept of inheritance. When a new object is created, it
obtains certain default state and behavioral characteristics
from its class. In the functicnal languages, combinatorial

power is obtained through subordinate function application

and the use of functionals. In the object-oriented

approach, combinatorial power is obtained through comfposi- —
tion of new objects from existing ones, and through B
inheritance. ' '

D. INFERENCE SYSTENS AND LOGIC PROGRAMMING

Inference systems have developed through artificial
intelligence efforts at cognitive modeliny, knowledge repre-
sentation, and theorem proving. Based on the early produc-
tion system of Post [Ref. 6], these systems use rules,
similar to logical implication, that provide the computa-
tional framework for a program. Rule-based organization has
been described by Newell [Ref. 7], and an early language
based on the concept was Hewitt's PLANNER [Ref. 8].
Numerous rule-based systems have since been developed, with
notable examples being theorem frovers such as AM [Ref. 9],

14

languages, object-oriented languages, and rule-tased infer-

ence languages.

B. APPLICATIVE LANGUAGES

Applicative languages use the application of a function
to its arguments as the focus for computation. These
languages are typified by pure LiSP [Ref. 2], and by later
functional languages such as FP [Ref. 1] and KRC [Ref. 3].

The strengths of the applicative languages are exeupli-
fied by arithmetic expressions. These strengths include
clear interfaces between computational units, relative inde-
rendence of evaluation order, and a semantic regularity that
lends itself to simple verification and proof techniques.

Functionals, <functions which receive functions as argu-
ments and returm functions as results, provide a mechanisa
for the combination of simple, rrimitive computational units
into collections of arbitrary power and compiexity.

The applicative 1languages achieve their predictability
largely from the prohibition of side-effects during computa-
tion. This characteristic limits the problem domains to
which applicative sclutions can be readily applied. Like
the arithmetic expression, agpplicative languages cannot
readily describe the notion of state. There is no explicit
notion of time in an arithmetic expression, and applicative
languages are correspendingly weak in maintaining temporal
relationships. This characteristic limits the utility of
applicative languages in inherently state-oriented applica-
tions. Such applications include operating system activi-
ties, data base management, and discrete sinmulation.

C. OBJECT-ORIENTED LANGUAGES

The object-oriented languages have developed from simu-

lation languayes such as Simula [Ref. 4], and are typified

13

A

A. BACKGROUND

Two major issues in prograsming language desigm can be
characterized as abstraction and architecture. In this
context, abstraction refers to the ability of the language
to capture the ideas of the programmer. It is a measure of
expressiveness or semantiC power. Architecture refers to
those language characteristics, both organizational and
syntactic, that affect practical usage. This includes ease
of use for the programmer as well as the potential for effi-
cient implementation. Thus an important goal for a program-
ming language is to combine a fpowerful abstraction ability
with an effective language architecture.

Conventional languages have suffered in both of these
areas. These languages focus on the wuse of assignment
statements for computation, apd execution consists of the
sequential flow of program control between assignment state-
ments. John Backus described these "von Neumann" languages
as excessively complex and weak, wnose word-at-a-time
conceptual basis has created an "intellectual bottleneck"
[Ref. 1: p. 615]. These languages are oriented more towards
the word-at-a-time stored program computer than towards the
problem domains they attempt tc satisfy. Thus they have
poor abstraction ability. While simple, elegant imperative
langquages such as Pascal have enjoyed popularity, the need
for increased power has resulted in complex languages such
as Ada. Such languages have attained semantic power at the
expense of architectural effectiveness.

Several alternatives to the von Neumann languages have
been developed. Of interest in this thesis are applicative

12

. c . . P LR T St T T T CO R : . c e . AT P o T P AP A
- . . . B . . S . L LR - N N . 5 At e e et PO T Tl VN e N
TR P T SR S AR AR A AT TR R R .

. - « e . .
eI W -2 ThdD T e S Te0 Wi S W S-SV T Yoo

Ty — s

returned as the result of the [frocedure call in the expres-
sion where the call was invoked.

The procedure call as shown in the preceding exampie is
similar to the functicn invocation described earlier. Both
invocations may be used in expressions, returning results
that are incorporated in expressions. The underlying mecha-
nisms of the function and procedure call are different,
however. In particular, the frocedure «call relies on the
use of rules to describe 1its actions, and therefore relies
on side effects.

The server rule in this example may bLe triggered by
either an assertion cr procedure call involving the Request
relation. There is nothing abcut the form of the rule that
indicates its use 1in procedure calls. By convention,
however, such rules must use the leftmost member of a tuple
in the enabling relation as the receiver of the response.

The value returned by a procedure call does not have to

be used in an expression. In the following example:

if *Functiomn(job, c), =CodeTable(c, def) ->
Display{"Illegal function code"}

an assertion to the Display relation is assumed to eventu-
ally cause the message to be displayed at the user's
terminal. The value returned by the calling mechanism is
used for synchronization only, and is otherwise igrored.

G. SEQUENTIAL CONTRCI

In the preceding examples, no particular order was
assumed for the evaluation of oconditions in the antecedent,
and no order is assumed for the execution of the actions in
the conseguent. These actions may be considered tc be
asynchronous and concurrent. This situation becomes evern
rore unstructured when a collection of rules 1is beiny

26

considered for evaluation. Once again, no evaluation order
is assuned.

The seguential block provides a mechanism for the
frogrammer to specify an explicit order for rule evaluation.
This is shown in the following:

if *Request(a, r), -~Avail(r) ->
{ =-> Display("Waiting for resource..."};
if *Queue(r, 1) ->
Queue (r, cons{a, 1]);

}

The effect of this rule is to display a aessage and to add
the requesting agent to a queue for the desired resource.
The sequential block guarantees that the rules within the
{} 's will be evaluated in the order shown.

As the example indicates, the variables bound in the
antecedent retain their bindings in the sequential block.
The blocks may be nested, with the bindings of free vari-
ables extending to inner blocks.

In this example, the antecedent 1is omitted in the
Display rule. This is equivalent to a true antecedent.
When writing such rules, the notation may be shortened to:

Display [x}
which is eguivalent to:

if TRUE -> Display {x}.

H. CONTROLLING THE NAME SPACE

The rrevious descriptions give a simple mechanism for

the tinding of logical variables. The rules may be sumna-
rized as:

27

a4

v

e The scope of variables bound in an antecedent extends to

the consequenrt for a given rule.

e If sequential blocks are nested, ©pindinjys made in outer

blocks extend to inner blocks.

The previous examples have suggested a more global binding
mechanise, as indicated in the use of relation names. The
Request relation name is globally bound in this manner. The
mechanism through which global names are managed is the
directory.

A directory is a named collection of pairs, <name, defi-
nition>, where the name entry is a character string and the
definition is an object or value representation associated
with the npanme. The directory may be thought of as a named
symbol table.

Maclennan [Ref. 14: pp. 34-35] describes a directory
structure with two partitions: public and private. Names
defined in the public partition are globally visible to
agents other than the owner. Names defined in the private
partition are visible only to the owner.

A simple elaboration of this wmechanism provides a filex-
ible partitioning scheme. The public and private partitions
are associated with named directories. These directories
are organized into named classes, not necessarily disjecint.
In addition, there is a noticn of a ‘“current directory"®
similar to that in UNIX.

The context of a nanme, then, 1is determined by tae
current directory in which the rame is defined. FWhen evalu-
ating the binding of a name, the current directory public
and private partitions are searched for an entry. If this
local search fails, the public directories associated with
the classes of the current directory are searched. The
class structure defines a search path for variable lookup.

28

To illustrate these points, consider the definition of
the Request relation of previcus examples. Suppose the
current directory is "ServerDatabase," a member of the class
"Servers." The relation is created and named by:

Define {Private, "Regquest", Newrel{}}.

The Define procedure call makes a <name, definition> entry
into a directory partition. The Newrel {} procedure call is
assumed to return a unigque system identifier that represents
a relation. The definition shcwn, therefore, would create
the relation and bind a name to that relation in the private
partition of the current directcry.

Such a server relation would be of more general utility
than a private definition allouwus. Before the relation is
opened to broader access, an access control mechanisn is
necessary.

This control is achieved by associating capabilities
with each relation. When a relation is created with the
Newrel{} procedure call, full capabilities are associated
with the relation identifier. These capabilities include
read, add, arnd delete. A public definition of the Regquest
relation may be accomplished as follows:

Define {Public, "Request", AddOnly {Reguest}}.

The Addonly procedure call references the system identifier,

with full capabilities, that has been bound to the private

name Request. A copy of this identifier is made with
reduced capabilities but still referring to the same rela-
tion. This new identifier is then installed in the public

directory for general access. This technique of capability
addressing is based on the wcrk of Dennis and Van Horn
[Ref. 17].

Objects are created in a similar manner:

Define{Private, "Jobi", YKewobj{}}.

29

PP ey

The Newobj{} procedure returns a unique identifier to be

associated with an object. Objects created in this manner
i have no intripsic value associated with theas, and there is
-~ no access control asscciated with their identifiers.

I. A PROGRAMMING SYSTIEM

. The language elements described may be adapted to a

- general programming systenm. To simplify interaction with
the system, [Ref. W: p. 39)] suggests the use of rules as a
command ianguage.

E; / While syntactically similar to production rules, these

' conmand rules are subject to a slightly different method of

interpretation. If a user wishes to query the contents of

the Allocate relation, this may be accomplisked by:

if Allocate(x) -> Display {x}.

If analyzed as a production rule, however, this guery wouid
be a "fire forever" type. Rules such as this reguire a
different method of evaluation: test, fire, and forget.

The command rules represent the second class of rules in
the system. The first class of rules is that of the produc-
tion rules previously described. These rules are termed
active rules. Active rules comprise a body of state tran-
sition information that continucusly monitors the relations
referenced in their antecedents. Command rules are initi-
ated by an event in the system, and only evaluated once.
The initiating event in previous example was the entry of a
command rule at the termiral.

The active rules are distinct from command rules, jyet
the command rules provide the interactive interface between
the user and the systen. The two categories are bridged
with the rule denotation.

30

REARNES
et

.oa e,
2 e 0 -

P N et
L Vet
e B Bk na b et

.................
......

A rule denotation is a syntactic representation of rules

as data. A potential active rule may be described:

Define {Private, "ReguestRules",
<<
if *Request({a, r), *Avail(r) ->
Allocate(a, r), a{r)
>>
l.

The denotation is expressed between << >>'s, which is inter-
preted as "parse but don't evaluate." This definition binds
the parse tree associated with the server rule to the name
"RequestRules" in the private directory partition.

A rule denotation bound in this manner is a data struc-
ture subject to manipulation by the systen. To make the
transition from this passive status to active status, the
rule denotation is activated:

Activate{ServerRules}.

At this point, the rules expressed in the denotation are
noved to active status and enter a continuous test-fire
cycle,

This process is similar in many respects to progranm
development in a more conventional system. The command
entry of the rule corresponds to the creation of a precgjran
source file, and activation corresponds to coampilation,
linking, and loading.

31

Cet Lt
PYRCIN PN

s ald

III. DESIGN ISSUES AND GOALS

A. THE ARCHITECTURE OF RULE-BASED SYSTENS

Omega is a production-rule systen. Davis [BRef. 18: p.

301] describes these systems in terms of three components:
e A rule base. Omega's set of active rules.
e A database. The set of relations and their contents.

» An interpreter. The mechanism for rule selection arnd

execution.

B. RULE SELECTION AND CONFLICT

The control cycle of the interpreter processes rules in
a continual recognize/act cycle. The recognition rhase
consists of selection and conflict resolution [Ref. 18: p.
325].

Omega uses a forward-chaining method for rule selection.
This method, described in the examples of the previous
chapter, compares the antecedent of the rule to the data-
base. A rule 1is selected when an appropriate match |is
found.

In general terms, producticn systems produce a conflict
set for each recognize/act cycle [Ref. 18: p. 325]. The
conflict set consists of all active rules whose antecedents
are true given the current state of the database. In the
Omega system, the resolution of the conflict set is simple.
For a given cycle, each rule within the conflict set will be
tested and, if its conditions are true, will fire. The
order in which the rules in the conflict set are tested is
not specified.

The rules of Omega are indivisible once they are
selected [Ref. 14: pp. 19-20]. To illustrate this point,
suppose the following rules were active:

if *Request(a) -> Allocate(a, Red).
if *Request (a) -> Allocate(a, Blue).

Under this selection strategy, only one of these rules will
fire (assuming there is only <cne tuple in Request). The
indivisible nature of rule evaluation guarantees at least
mutual exclusion for rules such as these. Since the evalua-
tion order for these rules is not defined, a more explicit
antecedent would have to be designed to establish conflict
priorities.

The rule selection and corflict strategies support a
powerful execution mechanismn. Using +this approach, the
procedural information of the system is sensitive to the
state of the database, and responds accordingly. This
Lehavior is more conmrlex than a procedure-oriented systen,
where the thread of execution control is more closely tied
to the procedural code organization.

The complexity of rule testing has performance penalties
associated with the precision of rule selection. By preci-
sion, we refer to the numker of rules whose antecedent
conditions are true compared to the number of rules selected
for testing. The most inefficient and most obvious level of
precision is to scan the entire rule base on every cycle.
We call this a glokral sweep strategy. At the opposite
extreme is a selection strategy that produces only
"successful" rules for test.

C. PATTERN-MATCHING

At the heart of the rule evaluation process is pattern-

matching. Given the form of a rule:
if R(el) -> . . .

33

At Al S e A eI AL S e O e A il

a description the pattern-matching process for each candi-

date tuple x in R is:

match[x, el]:
if x=Nil and el=Nil
return TRUE
else if x=Nil or el1=¥Nil
return FALSE
else if el is an aton
if el is unboungd
bind[el, x]
history := cons[el, history]
return TRUE
else if el = x
return TRUE
else
return FALSE
endif
else if match[first[x , first[el]]
return match{rest{x], restle1]]
else
return FALSE
endif
end match

This descriptiorn assumes a LISP-like list representation for
tuples.

This pattern-matching process is expensive.
Incorporating this method at the heart of the interpretation

cycle presents a significant design challenge.

34

L. e '
‘r-...vI"‘

l" ','.‘."
ot ol kol i

P

PR PP W S S WAL IPRPIAT UIY PHLIP. DAL Sl P PR, PP I P\ gt g - gt . g g

L Ty —— e v

D. MOEE CONVENTIONAL ISSUES

Besides these unusual design issues, Omega is subject to
the same design requirements as more conventional languages.
These include:

e A parser and lexical scanner for command/rule input.

A procedure~oriented evaluation component for applica-

tive expressions.

e A flexible symbcl table nmechanism for the support of
directories.

e Dynamic typing.

e Dynamic memory allocation and reclamation.

E. DESIGN GOALS

The design goals for the prctotypes are grouped into the

areas of feature implementation, relation representations,
efficiercy, and evaluation.

1. [Feature Implementation

The major objective in this work was the construc-
tion cf working prototype interpreters for the language. A
progressive schedule was developed that sought to implement
the fcllowing features:

e Canonical Rules. This phase includes the developuent of

the inquiry, absence, assertion, and deletion functions
for tasic rule interpretaticn.

e Function definition and evaluation.

e Procedure calls.

35

4

L sl B e el Men e e sus s SEL Suth A Ee L el atull Stal S

e Cancel operations.

e Segquential blocks.

2. Relation Representations

Kelations and the operations defined on them are the
central components of the Omega systean. To support flexi-
Lility in relations, a variety of representations is desir-
able. Such representations could range from a simple list
structure to a relational database management system (DBMS).
To reduce the prcblems associated with multiple representa-
tion, the relation interface must be clear: an abstract

data tyre, with primitive oferations defined for data
access.

The Omega 1language was developed as a general-
purpose language, cagpable of [prototyping programming envi-
ronments and a variety of system-level functioas. This
orientation makes execution efficiency an important imple-
mentation issue. The goal was to obtain a level of
efficiency comparable to a LISP systen.

Efficiency was considered mainly in terms of execu-
tion speeds. In those cases where a space-for-time trade-
off was available, it was made.

4. Evaluation

i et S s

The final goal for the prototypes was evaluation. _
This evaluation centered on performance: how control strat- if?
egies and data structures affect execution time. A second
evaluation area was to determine the wutility of language -_1

features through prcocgramming exfperience. fﬂ’

ad

36

.....

IV. A LISP ERQTOTYPE

A. WHY 1LIspP?

The design issues for Omega led to the decision to write
a quick prototype <for the exploration of high-level design
decisions. The high-level corcerns were the interpreter
organization, selection strategies for rules, and the repre-
sentation of objects, relations, and directories.
Efficiency was not a design goal for this prototype.

Franz LISP was selected as the initial prototyping

language. This selection was mnade for the following
reasons:

e Availability. Franz LISP was available on the VAX

11/780 system Dbeing used for this work. e were

familiar with Franz LISP, and the implementation is
well-done. The system includes a reliable interpreter,
compiler, and debugging package.

e Symbolic facilities aid in fattern-matching. The heart
of the Omega design is the pattern-matching process.
The symbolic manipulation facilities of LISP allow these
algorithms to be programmed guickly.

e Dynamic typing. The dynamic typing of LISP corresponds

well with the typing of Omega.

e Memory manayement. Memory managdement is transparent
under LISP. While these issues can impact heavily on
system performance, they are complex and distracting to
early prototyping.

® Debuyging. The debugging facilities of Franz LIS?P are

excellent, and superior to any other development

37

e .
R
ek eamich,

environment available at the tinme. In a prototyping

project, extensive debugging is essential to cope with
constant design and coding changes.

B. ORGANIZATION

The interpreter is organized like a classic LISP inter-
preter. The organization is based on the description given
in Chapter 11 of [Ref. 19].

The top 1level consists of a read-evaluate-sweep loop.
The read functioa 1is a command rule parser. Commands are
entered at the terminal, parsed, and an instruction list is
generated. This instruction list is passed to the evalua-
tion function for execution. The sweep function processes
any active rules that are ready to fire after the actions of
the read-evaluate phases are cosplete.

C. THE LEXICAL SCANNER AND PARSER

The reader consists of a lexical scanner and parser.
Instead of evaluating input as 1ISpP expressions, the reader
accepts free-format input using the Omega grammar.

1. The lexical Scanner

A character reader function is used to pass a list
of characters to the scancer. This reader function uses the
character input <facility of Franz LISP [Ref. 20: PP
5.6-5.7]. As each character is read, it is added to an
input chnaracter list. The complete character list is
passed to the scanner.

The scanner [processes the input character 1list to
recognize tokens. When recognized, a character 1list is
compressed into a token (LISP atom) wusing the implode func-
tion [Ref. 20: p. 2.11]. The final output of the scanner is

38

L '_",'_". .
ety e s g

e

L

a 1list of tokens built wup in this manner. It is this
complete list of tokens that is passed to the parser.

The token classes consist of identifiers, constants,
and delipiters. Constants are 1limited to integers and
strings. Once a constant token is recognized and
constructed, a denotation function +transforms the symltol
into a LISP integer or string aton.

The separation of the scanner from 1its supportiny
reader function allows the same routices +to read fronm
multiple sources. Two reader functions are used: one for
console input and one for file input. The file input rfunc-
tion is used to support command rule entry from text files,
similar to the load function of Franz LISP [Ref. 20: p.
5.5].

When receiving console input, the reader needs to

distinguish the end of input for a command. Successive
carriage returns are recognized as this termination
condition.

A single-pass, recursive descent parser is used to
rrocess the token 1list produced by the scanner. As a
construct 1is recognized, an operator symbol is created
which, along with 1its operands, is added to the parser's
output list. The parser receives a token list as input, and
returns an operator/operand list as output.

The output list £for the parser is a simplification
of the abstract syntax for the 1language. Consider the
following input:

if *R1(x), R2(x) -> R3(x).

This rule 1is reduced to a token list by the scanner and

input to the parser. The parser output for tiais rule woulé

be the following LISP expression:

39

" (M T i e e i s S e s a e e an A s ane e e ——

scanner and parser written in C, and integrated into

rranz LISP as a foreign function [Ref. 20: pp. 8.4-8.8].

e Improved control strategies. More precise rule selec-

tion strategies impact heavily on performance.

e More efficient 1LISP. Franz LISP offers alternatives to
the simple list structures used in this prototype. An
analysis of the prototype performance could be performed
to pinpoint areas for LISP code optimization.

The LISP prototyre was intended to be a throw-away
implementation. While numerous improvemeats are possible in
this fprototype, the performance of the LISP interpreter
becomes a final limitation. An implementation in a lower-
level language offers the potential for data structures, i/o
facilities, and memory management technigues that are more
closely tuned to the requirements of Omega.

An important decision in the life of a throw-away proto-
type is when to stog. This prototype was abandoned aiter
the irgplementation of a limited but fundamental set of
features. The prototype was revised numerous times, but
with a ainimal expense in coding time and implementation
complexity. #hile @many aspects of the interpreter design
changed in the follow-on 1implementation, the contributions

of this fprototype to the next were substantial.

P VL UL W VORI S WL LI LI S, WL WP

The prototype implemented a simple 1ist representation
for relations, and assisted in the identification of primi-
tive operations required to manipulate relations. Of
particular interest was the pattern-matchiny algorithm.
Fhile the implementation was flawed, the basic algorithm was
useful in the follow-on prototyrfe.

The iterative backtracking algorithm was more complex
than necessary. The stacks wused to support backtracking
suggested a recursive algorithm as a possible alternative.

The design chosen for the fparser was a poor one. The
steps of creating a character list, then a token list, and
finally an instruction 1list, were time consuming. The
requirement to scan the token list for the presence of the
"->" token worsened the already poor performance of the
parser.

The interpreter used the crudest possible control
strateqy, and tested every rule on each iteration of the
sweep cycle. This ccntrol strategy hLas the obvious advan-
tage of simplicity, but the performance 1is unacceptaltle.
The control strategy, together with the slow parsing speed,
resulted in a sluggish system response, even with a small
nupber of active rules. In one test «case, the parser
required 13 seconds to process a 33 line rule file; with an
active rule list of about 20 rules, a simple Display conmand
took 2 seconds to execute.

It was anticipated that the performance of this proto-
type would be poor, and so it was. This is not a reflection
of LISP as an implementation languige. No attempt was made
to write efficient LISP, and substantial improvements can

probably ke made. Potential areas for improvement are:

e An improved Gfarser. The character 1i/o in Franz LISP
lends itself to the inefficient implementation used in

the prototype. A possitle improvement would be a

52

When the interpreter begins execution, the following

events occur:
e The root directory is loaded into LISP.
e An Omega initialization file is parsed and evaluated.
e The interpreter begins its read-evaluate-sweep cycle.

The initialization file <ccntains Omega command rules
that allow the implementation of system functions with

rules. These rules are defined by the tollowing assertions:

Root ("Activate”, Newrel[]).

ActiveRules (Parse[Fread["sysgen.rul"]]).

The assertion to the ActiveRules relation initializes the
system's set of active rules to those contained in the file

“sysgen.rul." These initialization rules consist of:

if *Define(dir, name, def) -> dir (name, def).
if *Activate(newrules), *ActiveRules(oldrules) ->
ActiveRules(Append[oldrules, newrules]).

These rules and definitions are sufficient to set up a
minimum system. As shown by the rules for Define and
Activate, it 1is possible to express system functions as
rules. To ezpand these functions, more rules may be defined

and added to the active rule list.

H. LESSOBS LEARNED

This early prototype was instructive, both in those
functions which wvorked well ard in those functions which
performed poorly.

The major benefit was the implementation of a top-down

design. The read-evaluate-sweep cycle demonstrated that a
recursive, LISP-1like 1interpreter design was wuseful for
Omega .

51

P T — Lane

I‘V’.V""'
PP O O]

G. A BOOT SYSTEM

After the implementation of the basic rule interpreter,
it was necessary to identify a rminimum set of definitions to
support a working system. When such a system becomes opera-
tional, additional features <can be added through rules
defined in Omega.

The foundation of the naming mechanism is the Define
relation. No rules, relations, or constructs may be added
to the system without the wuse of Define. To accoamodate
names that are added as the system grows, a minimum of a
single directory is necessary.

In this prototype, a root directory, defined in LISP,
contains the initial bindings required by the interpreter.
The root directory dinitially contains the bindirgs for the
Define relation and the active rule list. This directory
also contains a reference to itself: a binding for the name
"root - n

To support the definition cf system functions in 1ISP,
the names of tkhese functions are pre-defined ét the time of
system initialization.

The initial root directory appears as:

(setq root '({(
("Root" root)
("ActiveRules" ActiveFules)
("Cons" cons)
("First" car)
("Rest" cdr)
("Append" append)

)

This association 1list binds the Omega names to the appro-
priate 1LISP symbols.

50

and additional <cycles will onot produce any new state

information.

F. ERRGCR CONDITIONS

Binding requirements differ as rule evaluation proceeds
from the antecedent instructions of the rule to the conseg-
uent instructions. These reyuirements constitute a signifi-
cant source of error.

In the antecedent, the members of a tuple may or may rot
te bound. An unbound variable at this point is not an
error, unless the variable is involved in an applicative
expression. In the consequent cf a rule, all variables must
be bound. Unbound variables at this point are regorted as
an errore.

The binding for relation names is more strict. Given a
left-to-right evaluation of instructions, each relation name
nust be bound before its evaluation.

Consider the rale:

if *R(x), x(y, BR) => . . .

The evaluation of relation R occurs first. The variable B
must be globally bound, or an error will occur. In
contrast, the variable x is bourd in the R(Xx) ingquiry. Its

later use as a relaticn name is valig.

The requirement that relation names bLe bound is an
implementation restriction. A more general mechanism would
allow a sequential search of all relations in the database
for trial bindings of relation rames. This would extend the
free variable binding process previously shown only for the
tuples in a relation.

A simple error-handling approach is used in this systen.
When an error 1is detected, a message is displayed and the
intergreter continues with the evaluation of the next

instruction.

49

e e
LA
[P

1

Bl

PREAY)

Lot
R T
[P PO R |

A
Lot

.

NSS4

)
2
'y

T ———

Consider the following rule:

if *R1({x, x, ¥y) -> R2(%x, Y)-

Assume the relation R1 only contains the tuple <1, 2, 3.
Using the match algorithm previcusly Jescribed, the pattern
<x, x, y»> would successfully match against <1, 2, 3>. To
prevent such an error, the match algorithm must take tempo-
rary bindings into consideration. This reguires an exposure
of some of the details of the binding mechanism to the rela-

tion management routines.

E. CONTROL

Active rule interpretation cccurs during the sweep rhase
of the interpreter's top level. This prototype uses the
simplest possible control strategy for rule selection: each
active rule is tested on every cycle. Active rules are
maintained in a list, and the execution function is mapped
to each of the rules. 1In LISP terms, this is written:

(mapcar ' (lambda (rule)
(exec (car rcule) (cadr rule)))
ActiveRulelist))

The 1lambda functioun splits each active rule into its
instruction and environment components.

After each cycle, the above segquence returns a list of
results from each application of the execution function.
The result for a cycle appears as:

(t t nil nil t nii . . .nil)

where each "t" response comes from a successful rule execu-
tion. The sweep phase will ccntinue to cycle through the
active rule 1list until all rules return a "nil" response.
At this point, the active rule list is in a quiescent state,

48

directory to be used for varialble lookups. A rule, then, is
represented as a pair: <ep, ip>, with environment pointer
(ep) and an instruction pointer (ip). This representation
is called a closure, and is a technique used to simulate
static variable birding in LISP systems [Ref. 19: PP-
436-37].

To support temporary rindings made by pattern-
matching, a local symbol table is used. The evaluation of
variable bindings follows the following segquence:

e WVken a rule begins execution, a global environment

pointer is set to the envircnment pointer for the rule.

e To evaluate a variable, the local symbol table is
searched for a [revious definition. If not already
defined, the directory referenced by the environment
pointer is searched for a global bimding. If globally
bound, the variable and its definition are installed in
the local symbol table.

e Tf not defined in the 1local symbel table or in the
rule's directory, the variable is considered unbound.
This is represented by the installation of a special
"unbound” definition in the local symbol table.

Variable binding details are external to the rela-
tion management functions. Before passing a tuple to the
match function, 1lookups are made in the local symbol table
and variabies replaced by their definitions. The match
function accepts this tuple as input, and returns a pointer
to the corresponding relation tuple if a match is found.
Free variables become bound by having their match counter-
parts added as definitions in the local symbol table.

The isolation of the relation match function froa
variable binding simplifies the interface between the rela-
tion management routines and the evaluation function. This
simplistic approach is flawed, however.

47

match_egqual, however, no variable binding is done. 1Instead,
variable bindings are made after match_equal returns its
result.

The add function places new tuples at the beginning
of the relation list, making the relation list a LIFO struc-
ture. The delete function removes a tuple directly from the
relation list.

5. Binding

Variable binding is controlled by symbol tables for
temporary and global bindings. These symbol tables are
implemented as association 1lists, and are manipulated
through the follcwing management routines:

e Add. Install a symbol and its definition in the symbol
table.

e Delete. Remove a symbol and its definition.

e Lookup. Given a symbol, search the table and return the

definition.

The use of association lists for symbol table repre-

sentation is not the most efficient method provided by I1ISP,

but dces offer some advantages. The representation is
simple, and the talle contents can be easily inspected
during debugging. Also, there is a close corresporndence

between these association lists and the structure chosen for
relations.

The correspondence between symbol tables and rela-
tions allows the direct implementation of directories as
relations. The directory prcvides an environment which
binds variables during rule evaluation.

To support the use of multiple directories, the rule
structure was expanded to include an environment pointer for

each rule. This environment pointer represents the

46

PRIV PR IAE A U N TN TP PN AP

e e e e e e e e s e e o

if match_eyual[first[R], Tuple]
return R
else R := rest[k,
end while
return FALSE
end match

The match_egual function 1is a godified version of a recur-
sive list equality test. A podification is regquired for
unbound variables. The algorithm is:

match_equal{R1, R2] :
if R1=Nil and R2=Nil
return TRUE
else if R1=Nil or R2=Nil
return FALSE
else if R1 is UNBOUWD
return TRUE
else if R1 is an aton
return R1=R2
else if match_equal[first[R1], first{R2]]
return match_equal{rest[{ k1], rest{R2]]
else
return FALSE.

€nd match_equal.

The match function performs a linear search of the
relation. Each tuple is selected and tested until a match
is found or the 1ist of tuples is expended. The index
parameter passed to the match function indicates the foint
in the relation where the search is to begin. This irdi-
cator is non-nil when the match is being requested on a

backtrack attempt.
The match_equal algorithm is similar to the pattern-
matching algorithm discussed in the previous chapter. In

4s

. ." L
PP R Y

P
. A
PR

—t ot

............ R R e T AP U e B ~ . P R ..

LI PRI N I R P IR T PP S W TP U O Pt o Eala o a " ‘.'.'\.M'-'-‘-'-‘L ‘;1;.‘;'(;;'.._';'._;'-“LL‘J

..... - e maee 4 o — e 2 " A T TR Cadai 2 At il anuis gl Jute - T

4. Relations

Relations are represented as objects which have an
i associated list of tuples. The relation object identi-
fiers are created through the gensym mechanism previously
described. A value is bound to the symbol using the set
function of LISP.
. To 1illustrate this representation, consider the

following sequence of command rules:

Define (root, "R1", Newrel[).

R1 ("all' "b"' "C").

ol R2 ("x", wymw, wzw),
The Newrel[] function returns the object identifier for the
new relation. After the assertions, the relation R1
) consists of the £following:

(
(lla" "bll "C")
("x" Ilyll "zll)
o)
The relation is a list of tuples, each of which is a list.

With the list representation for relations is a set

‘ of management routines. These routines are match, add, and
delete.

The match function provides the mechanism for

pattern-matched ingquiries. The function is constructed as
> follows:

match{ RelationName, Tuple, Index] :
if Index = Nil

R := get binding of Relation Name.

,; else

ti R := Index
%1 endif

- while R <> Nil
»

4y

This applicative mechanism bypasses some important
issues which a non-LISP implementation must consider. These
issues include functicn definition at the rule level and the
interface bhetweer the object-oriented and applicative inter-
preter mechanisms.

The simplicity witbk which new Ifunctions can be
defined to support the Omega interpreter gives this imple-
mentation a strong reliance on functiors. Consider the
implenmentation of a rule for Display:

if *Display (x) ->
Null (Print[x]).

The function call Print{x] 1is translated directly to the
1LIS? print function. Null is a dummy relation whose only
purpose is to allow the print function to execute.

In the above example, the use of the Print function
is inconsistent with the philosophy behind the applicative
component of Cmega. The LISP print results in a side
effect, and is therefore not a pure applicative expression.

The print mechanism 1is more accurately =aodeled
through relations. A functionral implementation is forced in
situations such as this to allow access to LISP definitions.
The consequence of this "bending" of the semantics of the
language is shown by the appearance of awkward constructs
such as the Null reladtion.

3. Cbjects

Pt =P

An object in Onmega is used as a place-holder in
relations. To £ill this role, the fundamental character-
istic of objects is uniqueness. This was easily implemented
using the gensym function of Franz LISP [Ref. 20: p. 2.8],

which returns a unique symbol e€ach time it is «called. A
functicn to create new object identifiers needs only to make fﬁ}

successive calls to gensya. fjp

43

predecessor are popred from the binding kistory list and
undone. If an instruction succeeds, any free varialle bind-
ings made during its evaluation are pushed on tke binding
history 1list.

The cancel operaticn requires the generation of a DELZETE
instruction should the cancel evaluate as "true."™ A delete
list 1is maintained for this rpurpose. To support tack-
tracking, the delete list is checked for duplicates before
adding instructions. The instructions in the delete list
are passed to the evaluation furction after all the instruc-
tions for the rule have successfully executed.

1. Instruction Evaluation

The instruction evaluation function perforus a
direct interpretation of the instructions produced by the
parser. The steps of the function are simple:

Eval[l]:
return Op [Evalf o1, o2, . . ., on]]
where Op is the cperator of 1 and
<o1, . . ., on> are the operands of 1
end Eval.

The function recursively evaluates the operands of an
instruction, then aprlies the instruction's operator to the
result. To support this organization, a LISP function is
defined for each operator.

2. 1The Applicative Component

The applicative compcnent of Onmega is simply
supported by function definitioms in LISP. Such functions
are invoked by the APL operator, which is passed the func-
tion name and its argument~. These symbols are directly
intergpreted by LISP, and a result produaced.

42

PPN

-—ta

R A A LA S e 4 A m. . i Y e ¢ haale s s Jea e s S sees ame T

This protlem 1is solved by a pre-scan of the token
list before parsiny. If the token list doesn't corntairn the
w->" token, it is inserted at the beginning of the list.

D. RULE EVALDATION

The interpretaticn of a rule is done by an iterative
execution function and a subordinate recursive evaluatiorn
function. The execution functicn steps through the instruc-
tions in a rule and passes them to the evaluation furction.
This separation into iterative and recursive functiomns is
done to facilitate backtracking.

The evaluation function returns a value of "true" or
"false." If an instruction is evaluated "false," the execu-
tion routine resets any temporary bindings associated with
that instruction's predecessor, then attempts to re-execute
the predecessor. The rule fails when this process backs up
to the initial instruction. It succeeds if all instructions
succeed.

At the level of the execution function, there is no
distinction between the conditicns of the antecedent and the
actions of the consequent. Backtracking is only meaningful,
however, in the antecedent portion of the rule. Therefore,
the evaluation function always returns "true"™ for instruc-
tions generated from the conseguent of a rule unless an
error is detected.

An instruction history 1list (a stack) is maintained to
support backtracking. If a racktrack 1is required, the
pointer to the predecessor instruction is popped from this
list. If the instruction succeeds, the pointer for the
instruction is pushed on the list.

A tinding history 1list (another stack) records the
logical variable bindings being made as each instruction is

evaluated. If an dinstruction fails, the bindings of its

41

(CANCEL (INQUIRY (VAR "R1") (TUPLE (VAR "x"))))
(PRESENT (INQUIRY (VAR "R2") (TUPLE (VAR "x"))))
(ASSERT (VAR "R3") (TUPLE (VAR "x")))

)

The sublists preceded with the symbols CANCEL, PRESENT, and
ASSERT are termed instructions. A list of these instruc-
tions is produced for every rule.

These instructions correspond to the basic actions
that the interpreter must perform. Besides the three
instructions shown, this prototype produces similar instruc-
tions for the deny operation (DENY).

Subordinate instructions are created for operani
generation and evaluation. In the preceding example, the
sublists headed by INQUIRY, TUPLE and VAR fall into this
category. Other subordinate instructions are included for
constants (CON), rule denotations (DENO), and function
application (APL).

A subset of the original Omega grammar is recognized

by the parser. The intent was to allow the interpreter to
evaluate the simplest canonical form of rules, which uses
present/inquiry tests, absence tests, assertions and
denials.

The Omega grammar described in [Ref. 14] makes no
syntactic distinction between the antecedent and conseguent

of a rule. Thus, a rule would te written:
R1(x), R2(x) -> ER3(x), RY4 (x).

The convention of allowing the ®->" to be omitted in a
command rule requires an indeterminate lookahead to decide
whether the antecedent or consequent portion of the rule is
being parsed. If the "->" is omitted, every token in the

input list must be examined.

40

A.

V. A FOLLOW-ON IMPIEMENTATION IN C

WHY C?

The second prototype was written using the C language,

although other alternatives were available. The decision to

to use C was based on the following:

The

High level control structures. The language has a
reasonaktle set of control structures that support

modular programming.

Simple but flexible data structuring. C supports a
limited but flexible set of data types and constructors
that are well-suited <for interpreter implementations.
The bit-level operations and weak data typing provide
opportunities for space and speed optimizations.

Recursiorn. C is a recursive language, and many of the
algorithms explored in the LISP prototype were easily

transl] .ted into recursive C versions.

Integration with UNIX. As with the LISP prototype, the
feollow-on was developed on a VAX-11/780, using Berkeley
UNIX (3SD 4.2). No language is better suited to UNIX
than C, and vice versa. The operating system provides
many features that directly support access to systen
routines and variables. The numerous software develop-
ment tools available on a UNIX system are largely

intended for use Lty C proygrammers.

C is not a perfect implementation language by any means.

availability of low-level cperations and type coercion

provide a dangerous source of error and confusior. The

terse syntax is difficult to read for those unfamiliar with

54

the language. Finally, C's strict use of call-by- .lue
forces a proliferaticn of pointer usaygye, complete with a
flood of subtle errors resulting from pointer abuse.

Despite its limitations, C is a tool well-suited to its
environment.

B. CHANGES TO SYNTAX AND SEMANTICS

1. An Antecedent Keyword

The previous chapter discussed the problea caused by
the optiomal "->" sign in the Omega syntax. The problem was
circumvented in this implementation by the use of the
keyword "if" to signify the beginning of the antecedent of a

rule. A one token loockahead is sufficient to detect this.

The original Omega syntax uses the "if" keyword to

signify a constraint. Thus a rule would be written:
*R1(x), *R2(y), 1L X > ¥y -> « . .

Syntactically, the keyword is nct necessary to distinguish a
constrairnt. Therefore, the use of the keyword was modified
to solve the lookahead problen. Usiag this modification,
the rule is written:

if *R1(x), *R2(y), X > y -> . « .
The semantics are unchanged.

2. Rule Denotaticns

The delimiters for a rule denotation were originally

asymmetric quotes. This was modified to the <K. e 2D
construct shown in previous chapters. This syntax was
selected to add greater visual emphasis for rule
denotations.

55

R —— ——— TV T T T YT

3. Ru.e Separators

A small but dimportant modification was amade toc the
use of the period and comma as deiimiters. faclennan uses
the semi-colon to separate rules within a sequential block,
and a period is used for the separation of rules in a deno-
tation. This distinction is made to emphasize the sequen-
tial nature of the block in comparison to the concurrent
nature of the rules within the rulile denotation [Ref. 14: p.
23].

This distinctiorn was altered to solve the command

rule termination protlen. Rules are always separated by
semicolons; a period indicates the end of the current
command rule input. This replaces the dual carriage return

termination of the earlier protctype.

This problem results from the use of rules as a
command language. Rules tend to span multiple lines, so0 a
simple end-of-line termination is not sufficient to indicate
the end of input. Two alternative solutions to this problen
are: (1) terminate a multi-line command with a continuation
character, or (2) use a special character to signify the end
of ingput.

The latter technigue was selected, with some loss of
the wuseful syntactic distinction between denotations and
seguential blocks. It is hoped that the remairing distinc-
tions between the two constructs, <>>'s s, {} 's, are
sufficiently different to serve as a reminder of the differ-
ences in semantics.

4. Parameter Lists

The original syntax for a function call was similar
to the form of an assertion or an inguiry. Thus a rule
would appear as:

*R1(x, Y} -> R2(cons(x, y))-

56

.......................

P

f (R
A hnd e boatousl B

e Tt
o, M .
L R P T T S S L

-1

o L —— R — ——— T RSl A i A S S et el St darhd

The square bracket notation for function parameter lists was

selected to provide an obvious distinction betweer function

calls and otner non-applicative forms in the language. The)
square brackets alsc denote lists, with the similarity

emphasizing the semantic connection between these

constructs.

A similar modification was made for the procedure
call, where curly braces denote the parameter lists. This
syntax appears unusual, and the procedure call mechanism is
unusual. The semantic similarities between the procedare
call and the sequential block, both of which provide some

degree of control on the otherwise free concurrency of
. Omega, is emphasized by their ccmmon use of curly braces.

i. 5. Conditional Expressions and Function Definitions

The introduction of an applicative component into
the language regquired syntactic extensions. These extern-

sions were centered around the conditional expression, which

is illustrated by the following rule: -
if *R1(x) -> R2({ if x<3 -> WYES" else "NO").

The value of the assertion is determined by the condi tional -

expression. s

Given the form of the conditional expression, a

function declaration can be formed by giving the function e

name, parameter list, and body (a conditional expression):
fn Max(x, y] ¢ if x > y -> x else y. -

Syntactically, a function declaration may appear anywhere a
command rule would aprear.

The form of the conditicnal expression is a modifi-
cation to the original syntax of the rule, with restrictions
to prevent side effects.

oot
. "-' . M
AT ARy

P ony

e

57

2
S
A
A

| i

PEAP U S S |

RPN

6. An Implicit Response for Command Rules

A syntactic change was made to allow expressions at
the same level as assertions. This modification allows the
entry of the following command rule:

if *R1(x) -> X.

When this rule is evaluated, the binding of x is "returned"
by the rule. If this binding is printed by the interpreter,
the necessity for ubiquitous "[isplay" calls may ble less-

ened. This allows the command entry of expressions such as:
2 + 2 ¥ 5in{Pi/2].

where the interpreter returns the result.

While this modification to the rule syntax 1is

convenient for command rules, it provides some interesting
semantic questions. Suppose the foliowing 1is an active
rule:

if *R1(x) -> 2 + 2.

Wwhat does the conseyuent of this rule mean? It involves no
aiteration of the database, but instead requires an expres-
sion evaluation.

The action may be described by the following eguiva-
lent form:

if *R1(x) -> Eval{"2 + 2"}.

The expression is asserted to an implicit BEval relation, aand
the semantics of the procedure call apply. Note that, in
general, the value returned by a procedure call used at this
level is ignored. For command rules, this value may be used
to indicate the result returned from evaluating a rule.
Given this interpretation, consider the following

rule:
if *R1(x) -> R2({x).

58

e et f
Ll e T e e T
U R R
PV G B Y\

s e
S
N

What is the '"result" returned Ly the assertion? A simgple
convention is that that the assertion of a tuple x to a

relation R returns the tuple x as its result.

7. Head/Tail Pattern Specifications

A final added feature is a head/tail pattern speci-
ficaticn for lists, similar to that of Prolog [Ref. 21: p.
43]. This is shown in the followiny rule:

if *R1([h:t]) -> R1(h), R2{t).

The [h:t] notation will match a 1list. The variable h will
be bound to the head (first) of the list, the variable t
will e bound to the tail (rest) of the liist.

The head/tail specification syntax is extended for
tuples:

if *R1(h:t) -> R1(h), R2(t).

This notation provides a pattern specification for tuples
that is independent of +tuple cardinality. This generality
was not possible using previous constructs.

C. DATA STRUCTURES

Data structures posed the major design challenges for
this interpreter. The structures of particular interest
were the representations for rules and for supporting the
objects and values of the language.

1. A Uniform, Tagged List Structure]

p—R—pe T T

A list structure, similar to that of LISP, was selected for

the representation of rules. This structure was selected -
for the following reasons:

PSPPI Y

59

e
e
taladalal gk o

e Rules are represented as birary trees. Using a list
structure for rules allows a direct, recursive evalua-
tion technique similar to that of the LISP prototype.

e Omega needs lists. Lists provide a general constructor
mechanism that is extremely flexible. In a pattern-~
matching 1language, 1ist structures are essential if

pattern-matching is to extend beyond character strings.

e Uniform list structures siaplify design. Given that
lists are desirable as a data type within the language,
a simple set of list handling routines suffices for
analysis and synthesis of data within the interpreter.
Uniform list structure alsc allows storage allocation
and reclamation to concentrate on a single unit: the
list cell.

A diagram of the basic cell structure is shown in
Figure 5.1 The c=211 has three fields: a tag field, a head
field, and a tail field. Table I shows the types of values
that each field may assunme.

The atomic values in this implementation are char-
acter strings, signed integers, and objects. These atoms
are represented by cells. The type of an atom, as withk all
celis, is determined by the value of its tag field.

Integers have their values contained directly in the
head field of a cell. Likewise, objects have their identi-
fiers encoded in this field. The width of this field is 32
tits, determined by the VAX 11/780 word size.

Character strings have a pointer in the head field
that references a contiguous block of string storage.
Reflectiny their C implementaticn, string storage areas are
NULL terminated. On the VAX, NULL is represented by a zero
value.

60

T —

TAG HEAD TAIL
°
8 32 32
* bits bits bits
Figure 5.1 Cell Structure.
A list cell contains pcinters ir both the head and
tail fields. There are two classes of 1list cells: Jata

list cells and operator list cells. These are distinguished
by tag values.

Data list cells are analogyous to LISP lists. T hey
serve as dJata constructors. Operator list cells form the
irterior nodes of a binary tree representation for rules.
Rules are transformed and evaluated as tree structures. The
"instruction" concept of the prctotype was dropped in favor
of a wmore uniform approach. Figure 5.2 illustrates the
parse tree for a simple arithmetic expression.

This tagged =structure simplifies evaluation at the

expense of storagye space. Individual tays are used for all

61

e fe)
Vit
P |

‘e aad

[- e y—— r————— ~- T -

TABLE I
Cell Field Values

head field:

Contents Comments
cell rpointer data and cperator list cells
string pointer string cell
integer integer cell value
used " for frame size in allocate op
object id object cell--id is 32 bit integer
<blcck,offset> VAK gellT—gives scope and offset
within birding stack frame
tail field:
Contents Comments
cell rointer data and operator list cells

VAR cells and defined objects have
pointers to print names

unused integer, string, and
and most cbject cells

primitive data types and for each construct (node) in the
abstract syntax for rules. This results in a large number
of tags: over 40 in the current implementation. A minimum
of 6 bits, therefore, is reguired to represent the tag of a
node. Given the cell space reguirements given in Figure
5.1, approximately 11 percent of the system storage reguire-
ment is needed for tags. (The actual percentage is somewhat
less because of character string blocks and hash talbles,
discussed below).

As in the LISF prototype, objects are represented by

a unigue identifier. In this implementation a cell is

———dd

Expre.sion: 2 + 4 = 5

PLUS ¢ ’

INY| 2 MULT T

P4

INT| 4 INT| &

Figure 5.2 Tree Representaticn for a Simple Expression.

generated for an object and ar identifier embedded 1in the
head field. Again the problem is how to manage the identi-
fiers so that the are unigue.

The approach used is tc maintain an object count.
Fach time a new object is rejuested, the object «count is
incremented. If the control of object identifier allocation
remains centralized, the objects are guaranteed tc be
unique.

The generation of identifiers this way leads to the
issue of object identifier management. What prevents the
system from running out of unigque identifiers? What happens
when the identifier space is exhausted?

63

T U S

T R TR A WP TR, S A i R A L Y

§
4

Y

o
.

l'-.' .

P :
BN DIy

Aadod

[‘o
talaAld sounh

.« R U R S WAL,

A simple strategy is to ignore these problems alto-
gether. How long can the systenr generate identifiers before
it runs out? For a rough calculation, assume that a new
identifier is generated every 10 milliseconds. The head
field which contains an identifier is 32 bits, so assume 29
bits are available (the use fcr the remaining 3 bits will
be discussed shortly). With these values, the identifier
space would be exhausted in 229 x 10 milliseconds, or about
62 days. The management of cobject identifiers is not a
major issue in this systen. Should a larger object identi-
fier space be needed, additional bits could ke provided from
the tail field of the object cell.

A small portion of the object identifier space is
reserved for system use. In the current implementation,
the first 64 object identifiers are reserved. The presence
of a system object is easily detected by an examination of
its identifier.

3. Hash Tables

As in the LISFE prototype, certain types of objects
have values associated with thesn. These values are managed
in this implementation using a uniform hash table mechanism.

The hash table index is generated by a simple hash
function. The algorithm is based on that given in [Ref. 22:
p- 135]. The hash functior receives a pointer to a cell as
an argument, and returns the takle index. The algorithm is
as follows:

hash{p] :
if p® is an integer or object cell
return pdhead mod TABLESIZE
else if pd is a string cell
return sum{ pdhead)] mod TABLESIZE
where sum[s] returns the sum of
the ASCII characters in the

64

string s

else
returan 0
endif

end hash.

This function is a crude hashing algorithm for string
entries, with its primary virtue being simplicity. Object
identifiers are gJenerated linearly, however. The direct
hash off these 1identifiers should result in minimal
collisionms.

The structure itself consists of a pointer table (an
array), with a collision list maintained for each entry.
The collision 1list links together a collection of header
cells. These cells have a key field with a list cell
pointer, a definition field with another list cell pointer,
and a link field with a pointer +to the next header cell.
Figure 5.3 illustrates this structure.

To complete the hash tatle description, a collection
of management and access routines are used. These are:

s Lookup. Given a pointer tc a cell, find an entry whose
key field points to an equivalent structure. If fournd,

return the definition pointer.

¢ Install. Add an entry to the hash table. The hash
table is searched for an existing entry with the same
key value. If found, that entry is replaced. If not
found, the new entry is linked into the appropriate
collision list. ©Note that key entries may be any struc-
ture: objects, strings, or 1lists.

¢ Delete. Remove an entry from the table. The table is
searched for the key value. If found, the entry is

removed and its ccllision list is relinked if necessary.

65

A R L e T RIS . .
I AR R NS s e e LTas)
DY AP W WL VIR ST SR W W W L WREVIFIREINY N l‘ AT A RGN SR ™

P S S Y

Collision List

Key Cell Definition Cell

Figure 5.3 Hash 7Table Structure.

Cbject representatiorns are linked to object identi-
fiers using these hash tables. The objects within Cmega
that have representations are relations, Jdirectories, rule
denotations, and functioas. These eatities are subject to

temporal change, and thus have an object implementation.

66

e W

4. xelatiomns

kelations are objects, rut with a twist: they have
access considerations. The access coantrol mecharism 1is
ercoded directly into a relation's object identifier. Three
bits of the identifier signify whether the «relation is
accessible for read, add, or delete operatioms. Wnen a new
relation is created, an object identifier is generated and
the capability ©Lits all set tc 1, indicating full privi-
leges. Subseguent orerations may reduce the capability by
copying the relation object identifier and zeroing the
appropriate bits. This produces a second reference to the
same relation, but with reduced access privileges.

Relations are represented as lists, similar to the
1LISP prototype. As a tuple is added to a relation, a header
cell is created for the tuple and linked in at the head of
the existing tuple list (if any). A pointer to this list s
bound to the relation's object idertifier through the object
table. The list representaticn of a relation is showr in
Figure 5.4

5. Directories

Directories incorporate the hash table into the
gereral list structure. A directory has two header cells:
a class link cell and a partition cell.

The class 1link cell cortains a pointer to a parti-
tion cell, and a poirnter to the next class link cell ir the
class. A lookup path, then, mpay follow this chain froa
directory to directory.

The head pointer of the partition cell points to the
private partition, while the tail pointer of the cell fpcints
to the public partition. Each fpartition is represented by a

single hash table.

67

looxups in the object takle where necessary. Thus, the
philosophical differences between objects and values 1in
Omega are supported by concrete differences at the impleamen- -

tation level.

I. BACKTIRACKING

A recursive backtracking algorithm is 1mplemented witl the

conditions (CONDS) orerator. A condition is an element of
the antecedent of a rule: a jresence/injuiry test, an
absence test, or a constraint. Backtracking is initiated

orly on the failure of a presence test. The algorithm is:

conds[cond_curr, cond_next, ep] :
match_next_ptr := Nil
while TRUE
result := eval{cond_curr, ep]
if result = FAIL
return FAIL
else if cond_next = Nil E
return result
end if
result := eval[ccnd_next, ep]
if result != FAIIL
return result
endif
if cond_curr is not a ‘'present' op
rceturn FAIL

end if
undo trial bindings made for condition
end while

end conds

This ealgorithm treats backtracking as a binary operation.

The "cond_curr" parameter is the currect condition FLeing

L e e e e e e e A B mer - ae st

Twe binding process uses the following primitive

routines:

e bind(x, Y] The frame slot for variable ¥ is assignel

pointer y.

e getbinding[x]. Return the value in the frame slot for

variablie x.

e freebkinding[x]. Free the binding for variable x. This

is accomplished Lty assignirg a reserved value to the
frame slot meaning UNBOUND.

When a rule ccmpletes execution, tne dynamic link is
followed to the previous <Zfrane, and the current frane
pointer reset.

The binding stack offers several advantages. First,
variakle lookups are only dore once: at activation tipme.
The dynamic binding fprocess is only concerned with a vari-

able's offset in the stack frame, not with the variable
name. The binding stack allows the simple reclamation of
storage wused for Dbinding. Finally, it allows context

switching in rule interpretation since bindings from iater-
rupted rules are preserved.

A context switch for a rule occurs during a synchro-
nous call. Consider the following rule:

if *R1(x) =-> { B2{x}; R3{X} }-

When the R2 procedure call is made, a context switch is made
to the body of rules that support the call. The binding of
the variable x, however, mnmust be maintained between the R2
procedure call and the R3 procedurz call.

This method of static bindin; eliminates unnecessary
variakle lookups by replacing variables by their defini-
tions. Generality is still maintained for objects such as

relations, whose associated values are determined by dynamic

80

Frame
Pointer

<7

Binding
Pointers

-

:

/ Link

RN

Base

Pigure 5.7

The Binding Stack.

79

.‘-‘5"-.'..‘. R T P I I R I P PR S I I

«

L b e et b bt e e e 2 e e e s S e 2o G JNA Mue Jbe Ben Nnn S e Sien e B ive Jbun o Do i T e A maris Shes —aate Shas it S
e Ve T T T LAALI EACECIAI A B -V R - - . .

A variable not defined in the directories of the
class is a free variable. The «cell representing a free T
variable contains an ofiset in the head field, and a pointer) -
to the variable's print name (a string cell) in the tail
field. The offset for a variable depends on the order in
which the free variables of a rule appear.

¥hen a free variable cell is initialized, a pointer
to the variable cell is installed as the print name's defi-
nition in a local symbol table. Subsequent occurrences of
the variable will be replaced by this definition.

During the binding prccess, the parse trees for
enbedded rule denotations are installed in the object table.
A system-generated object identifier replaces the rule deno-
tation subtrees in their parent expressions. The variables
in the rule denotation are 1left unbound--the binding of
these variables is deferred until the denotaticn is
activated.

The final action for the bindinygy process is the . ,
creation of an allocation operator cell for the rule. This Lol
cell has a count of the total number of free variables for
the rule 4in its head field. The taii field contains a

pointer to the actual rule structure.

2. A Binding Stack

The allocation operatcr is used wita a binding
stack. The binding stack is an array with a current frame
pointer and a chain of dynamic link pointers that connect
frames. The binding stack is illustrated in Figure 5.7

When a rule begins interpretation, a stack frame is
created on the binding stack with slots allocated for each
free variable in the rule. The offset in a variable cell
indicates which of thte binding frame slots is to be used for
that variable.

78

R P P i Wl P e W Sl SUROL WP PP A P Y P

result := rule[irdhead, ipatail, ep]

end case
return result

end eval

3ds in the LISP prototype, separate functions are defined for
the majority of interpreter actions. The function rule is
defined external to the case statement, and coantains code
for the interpretation of the RULE operator. Separate calls
to eval are used to evaluate the arguments to rule.

The evaluation function receives two arguments: a
pointer to the subtree being evaluated (ip), and a pointer
to the current directory for global name definitions (ep).
The evaluation function returns a cell pointer as its
result.

H. BINDING

1. Bimnding At Activation

This iamplementation uses an entirely different
binding mechanism than the LISP prototype. The variables of
a rule denotation are bound when a rule becomes active.
These bindings are determined by the environment of activa-
tion. Since a command rule is immediately executed, bindinj
takes rlace immediately for these rules.

The binding [frocess results in a complete copy of
the parse tree for a rule, leaving the original denotation

unaltered for later use. In this way, the denotation is
like a source file, the bound parse tree like an otject
file.

When a rule denotation is bound, the current direc-
tory is searched for variable definitions. The class of the o
current directory provides a search path to other directo- jﬂ?]

ries if the variable is not bound in the current directory. S

77 -

PO TN e N
PP W I € g e I

of the current subtree. A section of the algorithm may be

descrited as:

pretty_print{p] :

do case pdtag

case RULE :
print["if"]
pretty_print{[p@head]
print["->"]
pretty_print{ pdtail]
print[";"]

end case

end pretty_print

Although the pretty printer originated as a debugying
aid, the basic design of the tag-oriented case statement was
almost identical for the central evaluation function. This

pretty printer evolved into the Display mechanism for the
interpreter.

G. RULE EVALUATION

Where the LISP prototype used a separate, iterative
execution function for backtracking, the follow-on design
uses a recursive backtracking alygoritha within a single
evaluation function.

As in the pretty printer, the heart of the evaluation
function is a 1large case staterent. The tag value of the
form being evaluated determines the case selection. A
section of this case statement aay be described as:

eval{ip, ep] :
do case ipidtag

case KULE:

76

_ P AT

P
s .

e .
o L oaa

List: [1, 2, 3]

LIST
f
INT | 1
LIST| o | o
f
INT | 2

LIST|

INT 3

Figure 5.6 Transformed List Structure.

F. A EFECURSIVE PRETTY PRINTER

The parser, along with the «cell allocation routines to
generate the parse tree, was the first system coaponent
developed for this implementaticn. A pretty printer was
written at this point primarily to debuy the parser.

The pretty printer 1is based on a 1large case statement,

which selects the apgropriate ocutput form based on the tag

75

.
Sl L

List: [1, 2, 3]

LIST

INT 3

LIST| o | o

INT 2

LIST .

% INT 1

Figure 5.5 Left-Recursive List Representation.

The scanner produced by LEX accepts input from the
standard input file by default. To receive input from
another text file, the file is opened and the LEX input file
variable reassigned. This simple technigue allows the

alternation of input between several sources.

74

currdhead := t;
currdtail := pred
if h = Nil

return curr

else
return h
end if
end if

end rtrans

Figure 5.6 shows the list after the transformation has been
applied.

The YACC parser offers several advantages to a
prototyping effort:

e Development time. The high level of the specification

for YACC minimizes the «comrlexity of parser generaticn.
¥Fe had a complete, functicnal parser working in three

days.

s Ease of modification. Experimentation with syntax is
simple: change the grammar rules, rerun YACC, and
recompile the output. The ease with which the granmnmar

can be modified encourages experimentatioa.

e Verifying specifications. Analysis of grammar chanjes
is easy in YACC. If a change produces ambijuities, YACC
will report conflicts when trying to generate tkLe parser
tables. This automated analysis is a strong point in

favor of using a YACC parser.

3. Comsole and File Input

As in the LISFE prototype, the same parser is used to
read command rules from the console and from text files.

This is implemented using the i/o redirection facilities of
UNIX and C.

73

rule [Ref. 24: pp. 14-15]. This scheme results in a flat
gramnmar for expressions in YACC, where the precedence rules
determine associativity and precedence.

Certain constructs in Omega lend themselves to
recursive grammar ruies. YACC encourages such rules to be
left-recursive. Left-recursive rules result in a smaller
parser size, and reduce the likelihood of an internal stack
overflow when parsing a long seguence [Ref. 26: p. 19.].

Consider the following, left-recursive specification
for a list:

list : expression

] list ',' expression

The parse tree generated by such a rule is shown in Figure
5.5 Cne consequence of this fcrm is that the entire list
must be traversed to access the head of the list, an obvious
disadvantage in list-oriented interpretation.

To solve this problem while still respecting the
YACC preference for left-recursion, a recursive transforma-
tion 1is performed on parse trees. This transformation
selectively changes left-recursive forms into right-

recursive forms. The algorithm is:

rtrans{curr, pred] :

if curr = Nil
return Nil

else if curr points tc ap atonm
return curr

else if curr is not a left recursive fornm
currdhead := rtrans. currdkead, Nil]
currdtail := rtrans{ currdtail, Nil)
return curr

else
h := rtrans{currdhead, curr]
t := rtrans{curradtail, Nil]

72

{8

assertion : primary '(' arguments ')
{
3% = newcell (ASSEET, %1, 33);

}

Additional rules are given for "primary" and "arguments."
The newcell function generates a new cell witn the tayg
ASSERT, a head pointer set to the value returned Ly YACC
from parsing "primary," and the tail pointer set to the
value returned by YACC from parsing "argyuments."

The embedded C expressicn determines the actions of
the parser if an assertion is recoyrized. The assignment to
ng3" Jefires YACC's response: this valiue is placed omn a
stack for use in other expressicns. In this implementation,
the value generated for each rule is a cell pointer. When a
form is parsed successfully, the YACC parser returns a
pointer to the root of a parse tree constructed this way.
The YACC specification for Omega is contained in Aprendix A.

YACC is a more complex tool than LEX, and it has
some idiosyncrasies. These include precedence specification
for infix expressions and a preference for left-recursive
grammar rules.

Infix expressions may be specified in YACC Ly a rule

such as:
€xpr : expr OP expr

1
Such a specification is ambiguous, however. To remove this
acrbiguity, YACC allows the declaration of precedence rules.

Thus a precedence rule of:

Fleft T+v v
%ieft 'kv /¢

wouid establish the precedence of the arithmetic operators

and resolve the ambiguities associated with the previous

71

e e e st -

P
A s b e

that a reasonably efficient parser be produced with a

minimum of time and effort.

1. é

[

EX Scanner

The LEX lexical analyzer denerator [Ref. 23] was
used to produce the code for the scanner. LEX accepts as
input a file of rules described through regular expressions
and their associated actions. The output <from LEX is a
table-driven scanner in C source code.

The following seguence defines LEX actions for
recognizing unsigned integers:

digit [0-9]
int_con {digit}+
{int_con} {
return (INT_CON) ;
}

The return statement is an emkedded C language construct
used to describe the required action by the scanner. In
this example, INT_CCN is a constant used to represent the
token.

LEX is an easy-to-use, sophisticated tool. With no
previous experience, we specified, generated, compiled, and
debugged a LEX scanner in a few hours. The LEX specifica-
tion for Omega is contained in Appendix A.

2. B YACC Parser

The parser was written using the YACC (Yet Anoctker
Compiler-Compiler) parser gemnerator [Ref. 24]. Like LEX,
YACC allows a high level specification for compiler actions.
The output from YACC is a table-driven, LALR(1) parser. The
YACC fparser receives its token input from the LEX scanner.

The following illustrates the YACC specificatiorn for
an Omega assertion:

70

from the notion that a command rule "returns" a result. The

top level, then, consists of a read-evaluate-print-sweep
loop.

The read-evaluate-print fhases process the user's
command entry at the terminal. The print phase provides a

visual indicator that some activity 1is taking place because
of the command rule entry.

Suppose a user enters the following rule at the
terminal:

if *R1(zx) -> R2{x), R3(3).

The reader parses the expression, binds variables as appro-
priate, and then passes the parse tree to an evaluation
function. The response from the evaluation function is
displayed at the terminal. In this example, this resyp nse
would be "3." When multiple expressions exist in the
consequent of a rule, the response from the last expression
is disgplayed as the response for the rule.

After the command rule has been evaluated and its
response displayed, the interfpreter begins its sweep phase,
evaluating any active rules that are ready to fire. There
is po implicit respomnse from active rules: their purpose is
to alter the database. At the completion of the sweep
phase, the command loop returns to the reader and waits for
the next entry.

E. THE READER

The reader was a major weakness in the LISP prototyge.
While an efficient parser implementation was not a wmajor
design goal for this work, the slow, error-prone parser of
the LISP prototype was frustrating to work with.

A parser generator was used to «create the parser in the

second prototype. This decision was made with the intent

69

A L‘L'i_l;_'k'..L' P W NP LA AT . i

Relation Headers

LIST| - LIST
! !
. Tuple Headers
LIST o~— LIST
Tup'le Headers
~
LIST LIST

Figure 5.4 List Representation for Relations.

In this implementation, Jdirectories are represented
differently from relations. This distiuction was mpade to
optimize directory access by hashing, although there 1is a
loss of the generality enjoyed Ly the LISP prototype.

D. ORGANIZATION: THE TOP LEVEL

The interpreter's top level is siailar to that of the

LISP frototype. An added step--the print phase--resualts

48

..............

tested. The "cond_next" points to the remaining list of
conditions to be tested. A successiul response from eval on
"cond_mext" indicates that all remaining corditions have
tested successfully. A failure means a backtrack attempt

should be made on the current ccndition.

J. RELATION MANAGEMENT RODTINES

The relaticn management routines of the LISP prototype
are continued in this implementation. They are: match,
add, and delete. As in the LISFE prototype, the add function
links a new tuple at the beginning of the relation list.
The delete function removes the tuple from the relation list
and relinks as necessary.

A pattern-matching algorithm is used in the relation
match function. As in the LISP prototype, the tuple list of
a relation is searched linearly. As each tuple is selected
for a match, it is passed to tle pattern-matching function.
The match function maintains a "match_next" pointer. This
indicates where the last match occurred, and provides a
search contiruation point for backtracking.

The pattern-matching algorithm is similar to that given
in Chapter III. Unlike in the LISP prototype, trial vari-
able tinding occurs during pattern matchking. The pattern-
matching furction binds free variables by using the binad
operator of the binding stack. These bindings are undone if
a rematch is necessary when backtracking.

In +this implementation, relation access control 1is
enforced. The object identifier for the relation is first
tested to ensure the capability bit for the desired opera-
tion is set. If not, the operation is canceled and an error
message is generated.

Ar additional relation function w2s added: match_first.
This function returns a pointer to the first tuple in a
relation.

82

K. ACTIVE RULE PROCESSING
1. Iriggers

The technique of triygering is used to improve the
precision of active rule processing. The trigger for a rule
is the left-most relation in the the rule. For the

following rule:

if *R1(x), *R2(y) => - . -

the trigger is the relation R1.

A rule is selected for test when certain events taxe
place involving the +trigger relation. These events are
assertions and deletions. If either of these operations is
performed on the trigger relation, there is a 1likelihood
that the rule's antecedent conditions are now satisfied.

The triggering process is initiated at the time a
rule is activated. The trigger for a rule is determined,
and the rule 1installed in an active rule table (a hash
table), keyed by the object identifier for the trigger rela-
tion. A list is maintained in the active rule table for all
rules associated with a given trigger.

When an assertion or denial is made to a relation,
any rules indexed by that relation are selected from the
active rule table and tested.

A rule is always tested at least once: when it is
activated. This ensures that any pending conditioms will be

serviced hefore the rule enters its triggering cycle.
2. A Rule Queue

Triggered rules are @managed through a circular
queue. When a rule is triggered, a pointer to the rule is
placed in the rule queue.

During the sweep phase, all rules in this queue are

tested. If a rule succeeds, it remains in execution by

83

IPSRPSIIPRIE WS R WA iy WAL ST PN S S G SOy U SN R W W

. ST S e
e e e ——

staying in the rule queue. Instead of undergoiny continuous
evaluation, a successful rule is reinserted at the end of
the queue. This enfcrces a fairness policy: each rule in
the queue should get a turn at evaluation.

Given the nature of rule testing, only one instance
of a rule needs to be in the gueue at one time. Hultigple
instances will result in wasted interpreter cycles and
excessive queue sizes.

To control this protiem, a flag bit is used. The
flag bit is contained in the tag field (bit 7) of the first
cell in an active rule 1list. #hen a rule list is placed in
the queue, the flag bit 1is set. Subsequent attempts to
insert the rule 1list in the gueue will be ignored because of

the flag bit value. When the rule list leaves the queue (by
being selected for testing), the flag bit 1is reset and

subsequent queue reguests for the rule will be accepted.

3. Advantages and Disadvantages of Triggering Hfﬁ
Rule triggering has the followiny advantages: S
e Precision. The likelihood of triggered rules firing is .

good. The strategy is much more precise than the glokal
sweep strategy of the LISP grototype.

e Simplicity. The triggering mechanism described 1is B
simple, both in concert and in its supporting
izplementation.

e Triyyers are statically determined. The trigger is the
left-most relaticn of a rule. This 1is a simple,

syntactic distinction that is directly inferable frou

the visual form of a rule.

Despite its attractive aspects, the trigger mecha-
nism just described 1is too simple. To illustrate this

point, consider the following rule:

84

PR P ISP SLIPAP AP - - P .. b3 ‘Ll-